
Declarative Deadlines in Functional-Reactive Programming

Kevin Baldor
University of Texas at San Antonio and

Southwest Research Institute, San Antonio, USA
kevin.baldor@acm.org

Jianwei Niu
University of Texas at San Antonio

jianwei.niu@utsa.edu

ABSTRACT
Functional Reactive Programming (FRP) enables a devel-
oper to describe declaratively a program’s response to exter-
nal events. FRP has many implementations that share many
common features, but lack a common declarative mecha-
nism for describing time constraints, such as deadlines or
rate throttling. We present a set of Metric Temporal Logic
(MTL) primitives for expressing real-time relationships be-
tween events in a reactive system. Providing these primi-
tives in the core of an FRP framework allows a developer
to define new time-based constraints without resorting to
timers external to the FRP code. We describe the imple-
mentation of the basic MTL operators in a modified version
of the Sodium FRP framework and demonstrate its use for
an implementation of the debounce[4] primitive provided by
the Java implementation of ReactiveX (RxJava).

Categories and Subject Descriptors
D.3.3 [Software]: Language Constructs and Features; F.4.1
[Mathematical Logic]: Logic and constraint programming

General Terms
FRP, MTL

1. INTRODUCTION
Functional Reactive Programming (FRP) provides a mech-
anism for declaratively describing a program’s state as a
function of its inputs. Push-based FRP implementations
only compute updates in response to the arrival of input
events. Expressing real-time relationships involving time-
outs either requires that the reactive framework natively
support expressions that involve real time or that the pro-
grammer schedule an asynchronous event outside of the FRP
framework.

For example, the Java implementation of ReactiveX (RxJava)
provides a number of so-called backpressure primitives that
allow a programmer to limit the rate of input event arrival.

Such primatives are useful for optimizing the performance
of an application by, for example, waiting until the user
stops typing for a certain amount of time before performing
an expensive operation like parsing for syntax highlighting.
But there are other time-based constraints that make sense
for reactive applications; one might wish to guarantee that
a “heartbeat” message will be generated periodically when-
ever a connection is active. Normally, a programmer might
achieve this by launching a thread to produce a heartbeat
input and then respond to that. This will work, but strikes
us as contrary to the spirit of a declarative style of reac-
tive programming – particularly if the thread is started and
stopped from within the reactive code in response to input
events.

Metric Temporal Logic (MTL) is a well-established logic
in the runtime-verification community that extends Linear
Temporal Logic (LTL) operators with real-time constraints.
Here, we present the past-only subset of the dense-time,
continuous-semantics, MTL as a candidate set of primitives
for expressing temporal relationships between events with
an explicit notion of real time for use in FRP. With it, we
could use the syntax introduced in section 3 to address the
heartbeat example with the expression

¬connection open ∨[0,1)heartbeat message.

This reads “Either the connection is not open or there must
have been a heartbeat message within the last one time
unit”. A program designed to react to that statement ever
becoming false by sending a heartbeat message would guar-
antee that the heartbeat message will be sent once per time
unit whenever the connection is open.

We implemented, with some caveats, the MTL semantics
with a minimal modification to the Sodium FRP framework
which we describe in section 2. The Sodium project is an
attempt to create a common core of FRP primitives across
several languages, so we felt that it represents a reasonable
base implementation to explore the introduction of real-time
constraints. The features that we depended upon are pre-
sented in section 2.1. Section 3 describes the LTL and the
MTL extension that our implementation supports. The ac-
tual implementation of the MTL operators are provided in
section 4 and its use to implement the debounce operator of
RxJava is presented in section 5.

2. SODIUM FRP
FRP implementations may be push, pull, or a combination of
the two[7]. The original conception was pull-based, meaning
that each reactive expression was evaluated by re-evaluating
its inputs. This allowed inputs to be dense-time, continuous-
valued, functions of time, but was potentially inefficient be-
cause it could re-evaluate expressions for which the inputs
had not changed. Push-based implementations construct a
reactive expression as a network of listeners comprising its
sub-expressions. Each sub-expression fires only when its in-
put has changed. This can be more efficient, but introduces a
concern about the order of the evaluation of sub-expressions
termed glitch freedom.

For this investigation, we selected the Sodium[5] FRP imple-
mentation. It is a push-based FRP framework that seeks to
provide a consistent, minimal, set of FRP primitives across
multiple languages. We selected it for this investigation be-
cause of its guarantee of glitch-freedom and its notion of
transaction that supports effectively simultaneous input.

Glitch-freedom guarantees that, for a set of simultaneous
input values, only one externally-visible output change will
take place – even in the presence of diamond dependencies as
described in [6]. Briefly, diamond dependencies arise when
the results of one input travel over two parallel paths, both
of which arrive at the same final node. If all operations take
place concurrently, the final node may produce two outputs;
one when the first path completes and a second when the
second completes. The value that it will produce in that
intermediate state depends on which of the two paths com-
pletes first. Glitch freedom guarantees that the intermediate
value will not be produced. This allows us to write complex
temporal logic expressions and interpret its output without
waiting for the resolution of eventual consistency.

The Transaction is the locking and scheduling mechanism
that Sodium uses to ensure glitch freedom. One advantage of
Sodium’s implementation is that a developer can use Trans-
action.run(...) to describe a set of inputs that arrive si-
multaneously. In this way, it is analogous to a database
transaction in that it can be used to guarantee consistency
of the program’s state.

A note about nomenclature: For the benefit of readers com-
ing from a object-oriented programming background, the
publishers of [3] requested that Sodium use terminology that
differs from the common usage in the FRP literature. In
particular: behaviors are called cells and events are called
streams. The term cell suggests the cell of a spreadsheet in
that, for a cell, c, defined as the sum of two other cells, c1
and c2, any change to one of the input cells results in an
immediate change to the value in c. The term stream de-
scribes an ephemeral input. It has value only at the time of
the Transaction during which it arrives.

2.1 Sodium primitives
The implementation below depends on the following Sodium
primitives

Cell.lift(f : B,A→C, a: Cell<A>, b: Cell) → Cell<C>

This returns a cell such that whenever either a or b changes,

its value updates to f(a, b).

(s: Stream<A>).snapshot(a: Cell, f : A,B→C)
→Stream<C>

This returns a stream such that whenever an event s′ arrives
from s, it emits an event with the value f(s′, a).

(Stream<A> s).hold(initialValue: A)→Cell<A>

Returns a cell originally equal to initialValue and then when-
ever an event s′ arrives from s, it takes on the value s′.

(Stream<A> s).map(f: A→B)→Stream

Returns a stream that whenever an event s′ arrives from s,
it emits an event with the value f(s′).

(Cell<A> c).map(f: A→B)→Cell

Returns a cell that always has the value f(c).

(Cell<A> c).updates()→Stream<A>

Returns a stream of each new value taken on by c. Its use is
somewhat controversial; it disallows the idea of continuous-
valued, continuously-variable Cells, which were a significant
feature of the original implementation of FRP [8]. But it is
convenient and sufficient for modeling MTL values, as they
are discreet-valued.

3. TEMPORAL LOGICS
This section provides a brief overview of the past-time linear
and metric temporal logics. As its name suggests, the past-
time LTL provides a set of operators for describing when
boolean expressions have been true in the past. As such,
they are the only LTL operators appropriate for reactive
programming. Strictly speaking, LTL describes only the
order of sequence of truth values of boolean expressions;
MTL adds real time constraints. We use only the simplest
extension, providing a time interval – relative to the current
time – over which the operator applies.

3.1 LTL
Expressions of the past-time version of LTL are of the form

φ ::= p|q|¬φ | φ ∧ φ | φ ∨ φ | φSφ | φ | φ

where p and q represent a Boolean-valued expression – an
input, for our purposes in FRP. The familiar logical op-
erations negation (¬), conjunction(∧), and disjunction (∨)
operate as they do in standard propositional logic. The since
operator pSq yields an expression that is true whenever q
is true or p has been true since q became false. The once
operator, p, is true whenever p is true or has been true at
any point in the past. And the historically operator, p, is
true whenever p is true and has been true at all points since
time zero. For our application, time zero would generally be
the start time of the application.

An example LTL timeline is shown in figure 1. Each time
instant is labeled with a set of true LTL statements to illus-
trate the meaning of the once, historically, and since opera-
tors.

p

p
p

p

q

p
q
p

q

p
q

pSq

p

p
q

pSq

Figure 1: True expressions on an LTL timeline

Despite the word temporal in the name, the semantics of
LTL do not have an explicit notion of time and are instead
defined over a sequence of ordered discrete events and are
undefined between those events.

3.2 MTL
Metric Temporal Logic extends the operators of LTL with
the introduction of time intervals over which the operand
expression must evaluate to true. Such intervals may be
added to the since, historically, and once operators, but as
we argued in [1] it is sufficient to monitor standard LTL
operators and only intoduce metric temporal logic through
the once operator Ip. Metric versions of historically and
since can be synthesized as

Ip = ¬I¬p
pSIq = Iq ∧ pSq

For the instantaneous case considered in this paper, the in-
terval, I, must always be of the form (0, τ), (0, τ], [0, τ),
or [0, τ] meaning that p must be true at at least one point
within τ time units with closed or open intervals at either
extreme.

3.3 Point-wise vs. continuous semantics
The original semantics of MTL[9] were the so-called point-
wise semantics. That is, a fairly straightforward extension
of the semantics of LTL. Expressions are only defined at
discrete points with the addition of a timestamp on each
point for evaluating the intervals.

τ = 0
p

[0,1]p

[0,2]p

τ = 0.9

[0,1]p

[0,2]p

τ = 2.0

[0,2]p

Figure 2: Pointwise semantics of MTL

We advocate for the use of dense-time boolean signals with
continuous semantics that define both the input and out-
put of MTL expressions in terms of them. In short, we
use boolean signals that define a truth value at every time
instant. This is a less-common, but not unprecedented, se-
mantics in the model-checking and runtime-monitoring com-
munities both of which benefit from the simplified algo-
rithms of pointwise semantics or even discrete time. For
FRP, we feel that it is a natural fit as it has historically
[8] considered behaviors that vary over continuous time and
composition is easier to reason about. For example, as Basin

et. al. note in [2] under the point-wise semantics

[0,1][0,1]p 6= [0,2]p

Whether these statements are identical is a function of the
sampling period. For a system that evaluates all expressions
on a one-time-unit interval, they are always equivalent; for
systems that only respond to external input, they will often
not be equivalent.

Considering the example from figure 2 and extended in figure
3, where p is true at times 0.0, [0,1]p will be true at times
0.0, 0.9, and false at 2.0 because it is true whenever p is
true and the gap between 0.9 and 2.0 is greater than one.
Consequently,[0,1][0,1]p will be true at times 0.0, 0.9 and
false at time 2.0, but [0,2]p will be true for time 0.0, 0.9,
and 2.0.

τ = 0
p

[0,1]p

[0,1][0,1]p

[0,2]p

τ = 0.9

[0,1]p

[0,1][0,1]p

[0,2]p

τ = 2.0

[0,2]p

Figure 3: Unintuitive composition in pointwise se-
mantics of MTL

Under the dense-time continuous semantics, the above ex-
ample corresponds to p being true only at time 0.0 and false
at all other times. [0,1]p will be true on the interval [0,1]
and [0,1][0,1]p will be true on the interval [0, 2] which is
identical to the interval over which [0,2]p is true.

p

[0,1]p ��

[0,1][0,1]p �����

[0,2]p �����

3.4 Representing dense-time Boolean signals
Since a boolean signal can only take on two values, true or
false, the uncountably infinite number of points over which
its value is defined can be represented by a sequence of dis-
crete transitions. Each transition isn’t quite as simple as
true or false because the dense time representation allows for
a transition for which the value was false immediately before
the time of the transition, true at the time of the transition,
and then false immediately after the transition. In fact, this
is our representation of an event; a statement that is true
at only one instant. In our ealier work [1], we represented
these transitions with eight transitions representing all com-
binations of truth immediately before, at, and immediately
after the transition time.

{, , , �, �, �, �, �}

Using that representation required that we enforce certain
rules about adjacent transitions – namely that the outgoing
truth value from the earlier transition must match the ingo-
ing truth value of the later transition. It also led to awkward
treatment of the initial transitions at time zero. In this pa-
per we do away with both issues by representing transitions

only in terms of the truth at the time of the transition and
immediately afterward. This gives us four transition types

{, , , }.

A boolean signal, s, can be represented as series of times-
tamped transitions {(δ0, τ0), (δ1, τ1), . . . } with strictly in-
creasing timestamps. The truth of a boolean signal, s, at
time τ is given by

truth(s, τ) =

δ ∈ {, } (δ, τ) ∈ s

δ ∈ {, } (, τ) /∈ s with

max τ ′ s.t. (δ, τ ′) ∈ s ∧ τ ′ < τ

This simply means that if there is a transition at time τ ,
then the signal is true only if the transition is one of the
two that are true ‘now’, i.e. or . If not, then the truth of
the signal is given by the transition immediately preceding
time τ and in this case it is true only if it is one of the two
transitions that are true immediately after the time of the
transition, or .

4. APPROACH
We produced the FRP implementation of MTL operators in
a modified Java-only subset of Sodium called Lithium1 We
elected to branch because we had anticipated more substan-
tial changes to the core of Sodium – and more changes will
be required to achieve a fully-precise implementation. But
as of this writing, the only core change required was the in-
troduction of a timestamp to the Transaction to support
the correct scheduling of future events when modeling Ip.

4.1 Timer Implementation
The Ip operator requires some kind of timer mechanism
for producing the down transitions after the interval has
expired with no change in input. We implemented that
as timer-expired input and a single thread drawing timer-
expiration events in the order of occurrence from a priority
queue sorted by time. The queue supports the commands
addFutureEvent and cancelFutureEvent for which the time
of the future event is specified relative to the timestamp of
the current Transaction.

We have added in a way that minimally impacts the core
of the Sodium FRP implementation, but scheduling such
an event is the sort of side-effect that should not be caused
by any stage in a reactive framework. We know that it is
sufficient with the current implementation of Sodium, but if
its execution model were modified – even without a change
in its semantics, we might no longer be able to rely on the
prosecution of such external events.

Furthermore, there is no guarantee that the timeout thread
will wake at precisely the correct time. This could allow
input that arrived after the timer-expiration timestamp to
incorrectly be processed before the timer expiration – poten-
tially canceling a down transition that should have occurred
had the timer-expiration event been processed first. This is
a reasonably rare circumstance that we have been able to ex-
periment with the use of MTL operators with this imperfect
implementation, but a more correct implementation would
require a more significant impact on the core FRP engine.
1the name was chosen to suggest a less-reactive framework
since so much language support had been removed.

4.2 Transition values
As we described above, each update consists of one of four
transition values δ ∈ {, , , }. At the instant of the tran-
sition, the value is considered true for δ ∈ {, } and false
otherwise. Absent current transition, the signal for which
the last transition was δ ∈ {, } will be considered true and
will be considered false otherwise. We accomplish this by
introducing a transition class that is aware of the Trans-

action during which it was created. When queried for its
value during any other Transaction, its transition time can
be assumed to be past and it will return the outgoing truth
value: for true and for false.

4.3 Simple logical operators
The binary representation makes implementation of the op-
erators ¬, ∧, and ∨ straightforward. Each is simply a matter
of lift ing the appropriate function. To conserve space and
demonstrate their use, we implement p ∨ q as ¬(¬p ∧ ¬q):

Transition negation(Transition p) {
switch(p) {
: return ;
: return ;
: return ;
: return ;

}
}

Cell<Transition> not(Cell<Transition> p){
return p.map(negation);

}

Transition conjunction(Transition p, Transition q) {
switch(p,q) {
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;

}
}

Cell<Transition> and(Cell<Transition> p,
Cell<Transition> q) {

return lift(conjunction , p, q);
}

Cell<Transition> or(Cell<Transition> p,
Cell<Transition> q) {

return not(lift(conjunction , not(p), not(q));
}

4.4 Since
Implementing since is somewhat complicated because its
value at the current time depends in part upon its previ-
ous value. Even so, it consists solely of logical operations on
itself and its inputs. The lambda expression since_handoff

is used to detect the circumstance when p becomes true just
as q becomes false such that there is no time at which both
are false. And the lambda expression since_hold handles
cases for which the previous value of the since expression
was true.

Transition since handoff(Transition p, Transition q) {
switch(p,q) {
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;

}
}

Transition since hold(Transition p, Transition s) {
switch(p,s) {
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;

}
}

The actual implementation of the since primitive relies on
the Sodium concept of a CellLoop this allows the program-
mer to specify a reactive value as a function of itself. As of
the time of this writing, one can not use lift on CellLoops,
but snapshot is allowed.

Cell<Transition> since(Cell<Transition> p,
Cell<Transition> q){

CellLoop<Transition> s = new CellLoop<>();

Cell<Transition> handoff =
Cell.lift(since handoff, p, q);

Cell<Transition> hold = p.updates()
.snapshot(s, since hold).hold(q);

s.loop(or(q, or(handoff,hold)));
return s;

}

4.5 Once
The once operator depends on a timer expiration event and
provides an input timout on which to receive them. The
StreamSink data type indicates a stream to which a pro-
gram can explicitly send events, but Sodium enforces the
restriction, that StreamSink.send can not be called by a
listener; it must only be called outside of the FRP engine.
In this case, on an external timer thread. We keep track of
its currently-active timeout handler so that we can cancel it
whenever the input becomes true before the timer expira-
tion.

We maintain two streams of events, ups and downs, that are
used to control the value of the timeout handler. Whenever
any input event occurs that leaves the input in the true state,
the timer is cancelled and an empty Optional<TimerEntry>

instance is produced to reside in the handler. Whenever any
input event occurs that leaves the input in the false state,
a TimerEntry is created to produce the transition to false if
no input transition occurs before the timer expires.

Beyond the timer accuracy issue mentioned above, there is
another source of imprecision in this implementation. Sodium
does not have a mechanism for merging simultaneous event
streams. As of this writing, only one of the events will be
sent. This is unlikely to be a serious issue when dealing
with external events because real-world, dense-time, simul-
taneity occurs with probability zero. However, formulae can
be constructed to produce a sort of diamond dependency
on a single input and simultaneous updates become a pos-
sibility, so a perfect implementation would handle this case
properly as well.

Transition up transition(Transition v, Transition o) {
switch(p,s) {
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;
,: return ;

}
}

Cell<Transition> once cc(Cell<Transition> p,
final long delay ms) {

StreamSink<Transition> timeout
= new StreamSink<>();

Cell<Optional<TimerEntry>> handler
= new Cell<>();

CellLoop<Transition> o = new CellLoop<>();

Stream<Optional<TimerEntry>> ups
= p.updates().filter(v → v ∈ {, })

.map(v->new Optional<>());
Stream<Optional<TimerEntry>> downs

= p.updates().filter(v → v ∈ {, })
.map(v → v ∈ {, })
.map(d→

new Optional<>(
addFutureEvent(delay ms,

t→ timeout.send(d))));

handler = ups.merge(downs).hold(new Optional<>()));
p.updates().filter(v → v 6=)

.snapshot(handler,(t, h) → h)

.filter(Optional::isPresent)

.listen(h→ cancelFutureEvent(h.get()));

o.loop(p.updates()
.filter(v → v 6=)
.snapshot(o, up transition)
.merge(timeout).hold(p.sample()));

return o;
}

5. IMPLEMENTING DEBOUNCE
The debounce primitive of RxJava is a mechanism for re-
ducing the number of input events that must actually be
processed by subsequent stages of the reactive network. It
only passes on those events that are not followed by another
event within the time interval period ms.

We implement this by maintaining a cell lastValue that
contains the last value that has arrived on the input. This
value will be sent after the time period has expired without
an intervening event.

We also maintain a boolean signal named arrivals that rep-
resents the truth of the statement“an input event is arriving
now”, as such is it false except for the occasional infinites-
imal interval of truth – represented as a series of events.
The boolean signal debouncing defined as [0,1]arrivals

that indicates that an input value is ready to be sent.

We filter the transitions from debouncing until we observe
a event – indicating that the time period has expired with
no event at which point the lastValue is sent on the output
stream.

Stream<Type> debounce(Stream<Type> input,
long period ms){

Cell<Optional<Type>> lastValue
= input.map(i→new Optional<>(i))

.hold(new Optional<>());
Cell<Transition> arrivals = input.map(i→).hold();
Cell<Transition> debouncing

= MTL.once cc(arrivals,period ms);
return debouncing.updates()

.filter(v → v =).snapshot(lastValue,(e,v)→v.get());
}

6. DISCUSSION AND FUTURE WORK
Our current implementation required only minimal modifi-
cation to the Sodium FRP framework upon which it was
based, but there were two limitations on the precision of
its emulation of the real-time once operator. First, it relies
upon an external timer that uses the Java Thread.sleep

method to wait for timeouts. The only guarantee is that it
will sleep for at least the requested time (unless interrupted),
but it could sleep for an arbitrary additional amount of time.
This time is likely to be short, but could lead to incorrect
output if the timeout thread is starved for resources. Sec-
ond, it is possible to construct a formula for which two time-
out events are simultaneous. We have not found a suitable

modification to the Sodium framework to handle this case
properly.

In the near term, we intend to modify Lithium’s Transac-

tion update algorithm aware of the priority queue of waiting
events to guarantee that timer expiration is handled before
any input event that arrives after it should have expired.
We continue to explore options for addressing the issue of
simultaneous timer expiration and input arrival.

In the meantime, neither of these cases prevents the im-
plementation of reactive constructs such as the debounce

operation and other similar operations found in other re-
active frameworks, but we would prefer that if MTL is to
provide fundamental reactive primitives for describing such
behavior, then it should implement the precise continuous
semantics of dense-time metric temporal logic.

We have found that implementing such operations reliably
requires that the core of the reactive framework or language
be aware of the presence of timeouts and the need for a
consistent timestamp for each event. Our experience sug-
gests that, in general, there is no safe mechanism for adding
real-time constraints to a reactive framework that does not
support them natively. This is less of a concern for reactive
frameworks that do not make guarantees of glitch-freedom,
but for true FRP, it is important that the semantics of any
supported operation be preserved regardless of the underly-
ing implementation or runtime environment.

7. CONCLUSION
We propose the use of the MTL as a time-sensitive set of
primitives from which the time-aware primitives of other
reactive frameworks can be implemented. We claim that
the dense-time, continuous semantics are the best fit within
FRP because of their similarity to the FRP concept of be-
havior. We showed that they are nevertheless amenable to
implementation within a push-based FRP framework due
to the discrete range (binary) of values that Boolean behav-
iors may take on requiring only discrete updates. We then
demonstrated the implementation of the RxJava debounce
operator from the primitives of Sodium and the metric once
operator.

We found that a precise implementation of the MTL se-
mantics requires that the reactive framework be modified
to be aware of scheduled future events, but do not believe
that scheduling arbitrary future events is consistent with the
declarative FRP style. As such, we argue that support for
real-time constraints must be provided as a built-in feature
of any FRP system that intends to support applications that
depend on real-time constraints. We believe that the dense-
time, continuous-semantics, of metric temporal logic MTL
provide a reasonable set of operators for describing those
constraints: It is based on a well established logic, accepts a
reasonable efficient implementation, and maintains a repre-
sentation of the truth of a formula at all points in time that
is a natural fit for traditional FRP.

8. ACKNOWLEDGMENTS
Jianwei Niu is supported in part by NSF award CNS-0964710
and National Security Agency.

9. REFERENCES
[1] K. Baldor and J. Niu. Monitoring dense-time,

continuous-semantics, metric temporal logic. In
S. Qadeer and S. Tasiran, editors, Runtime Verification,
volume 7687 of Lecture Notes in Computer Science,
pages 245–259. Springer Berlin Heidelberg, 2013.

[2] D. Basin, F. Klaedtke, and E. Zălinescu. Algorithms for
monitoring real-time properties. In Proceedings of the
2nd International Conference on Runtime Verification
(RV), volume 7186 of Lecture Notes in Computer
Science, pages 260–275. Springer-Verlag, 2012.

[3] S. Blackheath. Functional Reactive Programming [Early
Access]. Manning Publications Co., 6 edition, 7 2015.

[4] S. Blackheath. Rxjava backpressure. https:
//github.com/ReactiveX/RxJava/wiki/Backpressure,
2015.

[5] S. Blackheath. Sodium.
https://github.com/SodiumFRP/sodium, 2015.

[6] J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini.
Distributed rescala: An update algorithm for
distributed reactive programming. In Proceedings of the
2014 ACM International Conference on Object
Oriented Programming Systems Languages &
Applications, OOPSLA ’14, pages 361–376, New York,
NY, USA, 2014. ACM.

[7] C. Elliott. Push-pull functional reactive programming.
In Haskell Symposium, 2009.

[8] C. Elliott and P. Hudak. Functional reactive animation.
In International Conference on Functional
Programming, 1997.

[9] R. Koymans. Specifying real-time properties with
metric temporal logic. Real-Time Systems, 2:255–299,
1990. 10.1007/BF01995674.

